Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Dissection of DNA Damage Re...
    Guénolé, Aude; Srivas, Rohith; Vreeken, Kees; Wang, Ze Zhong; Wang, Shuyi; Krogan, Nevan J.; Ideker, Trey; van Attikum, Haico

    Molecular cell, 01/2013, Letnik: 49, Številka: 2
    Journal Article

    To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways. Display omitted ► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability