Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • AKT activation by N-cadheri...
    Zhang, Jianing; Shemezis, Julie R; McQuinn, Erin R; Wang, Jing; Sverdlov, Maria; Chenn, Anjen

    Neural development, 04/2013, Letnik: 8, Številka: 1
    Journal Article

    During cerebral cortical development, neural precursor-precursor interactions in the ventricular zone neurogenic niche coordinate signaling pathways that regulate proliferation and differentiation. Previous studies with shRNA knockdown approaches indicated that N-cadherin adhesion between cortical precursors regulates β-catenin signaling, but the underlying mechanisms remained poorly understood. Here, with conditional knockout approaches, we find further supporting evidence that N-cadherin maintains β-catenin signaling during cortical development. Using shRNA to N-cadherin and dominant negative N-cadherin overexpression in cell culture, we find that N-cadherin regulates Wnt-stimulated β-catenin signaling in a cell-autonomous fashion. Knockdown or inhibition of N-cadherin with function-blocking antibodies leads to reduced activation of the Wnt co-receptor LRP6. We also find that N-cadherin regulates β-catenin via AKT, as reduction of N-cadherin causes decreased AKT activation and reduced phosphorylation of AKT targets GSK3β and β-catenin. Inhibition of AKT signaling in neural precursors in vivo leads to reduced β-catenin-dependent transcriptional activation, increased migration from the ventricular zone, premature neuronal differentiation, and increased apoptotic cell death. These results show that N-cadherin regulates β-catenin signaling through both Wnt and AKT, and suggest a previously unrecognized role for AKT in neuronal differentiation and cell survival during cortical development.