Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Genotype-Phenotype Aspects ...
    Shimizu, Wataru, MD, PhD; Moss, Arthur J., MD; Wilde, Arthur A.M., MD, PhD; Towbin, Jeffrey A., MD; Ackerman, Michael J., MD, PhD; January, Craig T., MD, PhD; Tester, David J., BS; Zareba, Wojciech, MD, PhD; Robinson, Jennifer L., MS; Qi, Ming, PhD; Vincent, G. Michael, MD; Kaufman, Elizabeth S., MD; Hofman, Nynke, MSc; Noda, Takashi, MD, PhD; Kamakura, Shiro, MD, PhD; Miyamoto, Yoshihiro, MD, PhD; Shah, Samit, BA; Amin, Vinit, MA; Goldenberg, Ilan, MD; Andrews, Mark L., BBA; McNitt, Scott, MS

    Journal of the American College of Cardiology, 11/2009, Letnik: 54, Številka: 22
    Journal Article

    Objectives The purpose of this study was to investigate the effect of location, coding type, and topology of KCNH2(hERG) mutations on clinical phenotype in type 2 long QT syndrome (LQTS). Background Previous studies were limited by population size in their ability to examine phenotypic effect of location, type, and topology. Methods Study subjects included 858 type 2 LQTS patients with 162 different KCNH2 mutations in 213 proband-identified families. The Cox proportional-hazards survivorship model was used to evaluate independent contributions of clinical and genetic factors to the first cardiac events. Results For patients with missense mutations, the transmembrane pore (S5-loop-S6) and N-terminus regions were a significantly greater risk than the C-terminus region (hazard ratio HR: 2.87 and 1.86, respectively), but the transmembrane nonpore (S1–S4) region was not (HR: 1.19). Additionally, the transmembrane pore region was significantly riskier than the N-terminus or transmembrane nonpore regions (HR: 1.54 and 2.42, respectively). However, for nonmissense mutations, these other regions were no longer riskier than the C-terminus (HR: 1.13, 0.77, and 0.46, respectively). Likewise, subjects with nonmissense mutations were at significantly higher risk than were subjects with missense mutations in the C-terminus region (HR: 2.00), but that was not the case in other regions. This mutation location–type interaction was significant (p = 0.008). A significantly higher risk was found in subjects with mutations located in α-helical domains than in subjects with mutations in β-sheet domains or other locations (HR: 1.74 and 1.33, respectively). Time-dependent β-blocker use was associated with a significant 63% reduction in the risk of first cardiac events (p < 0.001). Conclusions The KCNH2 missense mutations located in the transmembrane S5-loop-S6 region are associated with the greatest risk.