Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Formation of stellar cluste...
    Li, Pak Shing; Klein, Richard I.; McKee, Christopher F.

    Monthly notices of the Royal Astronomical Society, 11/2017, Letnik: 473, Številka: 3
    Journal Article

    Star formation in a filamentary infrared dark cloud (IRDC) is simulated over the dynamic range of 4.2 pc to 28 au for a period of 3.5 × 105 yr, including magnetic fields and both radiative and outflow feedback from the protostars. At the end of the simulation, the star formation efficiency is 4.3 per cent and the star formation rate per free-fall time is εff ≃ 0.04, within the range of observed values. The total stellar mass increases as ~t2, whereas the number of protostars increases as ~t1.5. We postulate that the density profile around most of the simulated protostars is ~ρ ∝ r-1.5. At the end of the simulation, the protostellar mass function approaches the Chabrier stellar initial mass function. We infer that the time to form a star of median mass 0.2 M⊙ is about 1.4 × 105 yr from the median mass accretion rate. We find good consensus among the protostellar luminosities observed in the large sample of Dunham et al., our simulation and a theoretical estimate, and we conclude that the classical protostellar luminosity problem is resolved. The multiplicity of the stellar systems in the simulation agrees, to within a factor of 2, with observations of Class I young stellar objects; most of the simulated multiple systems are unbound. Bipolar protostellar outflows are launched using a subgrid model, and extend up to 1 pc from their host star. The mass–velocity relation of the simulated outflows is consistent with both observation and theory.