Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Temporal Dynamics of Aerody...
    Chu, Housen; Baldocchi, Dennis D.; Poindexter, Cristina; Abraha, Michael; Desai, Ankur R.; Bohrer, Gil; Arain, M. Altaf; Griffis, Timothy; Blanken, Peter D.; O'Halloran, Thomas L.; Thomas, R. Quinn; Zhang, Quan; Burns, Sean P.; Frank, John M.; Christian, Dold; Brown, Shannon; Black, T. Andrew; Gough, Christopher M.; Law, Beverly E.; Lee, Xuhui; Chen, Jiquan; Reed, David E.; Massman, William J.; Clark, Kenneth; Hatfield, Jerry; Prueger, John; Bracho, Rosvel; Baker, John M.; Martin, Timothy A.

    Geophysical research letters, 08/2018, Letnik: 45, Številka: 17
    Journal Article

    Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface-atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum-flux data. At 69 forest sites, annual ha robustly predicted site-to-site and year-to-year differences in canopy heights (R2 = 0.88, 111 site-years). At 23 cropland/grassland sites, weekly ha successfully captured the dynamics of vegetation canopies over growing seasons (R2 > 0.70 in 74 site-years). Our results demonstrate the potential of flux-derived ha determination for tracking the seasonal, interannual, and/or decadal dynamics of vegetation canopies including growth, harvest, land use change, and disturbance. The large-scale and time-varying ha derived from flux networks worldwide provides a new benchmark for regional and global Earth system models and satellite remote sensing of canopy structure.