Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Zinc enhances hippocampal l...
    Sullivan, John A; Zhang, Xiao-Lei; Sullivan, Arthur P; Vose, Linnea R; Moghadam, Alexander A; Fried, Victor A; Stanton, Patric K

    PloS one, 11/2018, Letnik: 13, Številka: 11
    Journal Article

    The role of zinc (Zn2+), a modulator of N-methyl-D-aspartate (NMDA) receptors, in regulating long-term synaptic plasticity at hippocampal CA1 synapses is poorly understood. The effects of exogenous application of Zn2+ and of chelation of endogenous Zn2+ were examined on long-term potentiation (LTP) of stimulus-evoked synaptic transmission at Schaffer collateral (SCH) synapses in field CA1 of mouse hippocampal slices using whole-cell patch clamp and field recordings. Low micromolar concentrations of exogenous Zn2+ enhanced the induction of LTP, and this effect required activation of NMDA receptors containing NR2B subunits. Zn2+ elicited a selective increase in NMDA/NR2B fEPSPs, and removal of endogenous Zn2+ with high-affinity Zn2+ chelators robustly reduced the magnitude of stimulus-evoked LTP. Taken together, our data show that Zn2+ at physiological concentrations enhances activation of NMDA receptors containing NR2B subunits, and that this effect enhances the magnitude of LTP.