Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • The Electromagnetic Counter...
    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    Astrophysical journal. Letters, 10/2017, Letnik: 848, Številka: 2
    Journal Article

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational-wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the Southern Astrophysical Research and Magellan telescopes; the UV spectrum was obtained with the Hubble Space Telescope at 5.5 days. Our data reveal a rapidly fading blue component ( T 5500 K at 1.5 days) that quickly reddens; spectra later than 4.5 days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at ∼7900 at t 4.5 days. The colors, rapid evolution, and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light r-process nuclei with atomic mass number A 140 . This indicates a sightline within θ obs 45 ° of the orbital axis. Comparison to models suggests ∼0.03 M of blue ejecta, with a velocity of ∼ 0.3 c . The required lanthanide fraction is ∼ 10 − 4 , but this drops to < 10 − 5 in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of 12 km. This mass also supports the idea that neutron star mergers are a major contributor to r-process nucleosynthesis.