Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Uniaxial compression of [00...
    Sypek, John T.; Vijayan, Sriram; Bakst, Ian; Xiao, Shuyang; Kramer, Matthew J.; Canfield, Paul C.; Aindow, Mark; Weinberger, Christopher R.; Lee, Seok-Woo

    Acta materialia, 01/2021, Letnik: 203
    Journal Article

    Micropillar compression experiments on 001-oriented CaFe2As2 single crystals have recently revealed the existence of superelasticity with a remarkably high elastic limit of over 10%. The collapsed tetragonal phase transition, which is a uni-axial contraction process in which As-As bonds are formed across an intervening Ca-plane, is the main mechanism of superelasticity. Usually, superelasticity and the related structural transitions are affected strongly by both the microstructure and the temperature. In this study, therefore, we investigated how the microstructure and temperature affect the superelasticity of 001-oriented CaFe2As2 micropillars cut from solution-grown single crystals, by performing a combination of in-situ cryogenic micromechanical testing and transmission electron microscopy studies. Our results show that the microstructure of CaFe2As2 is influenced strongly by the crystal growth conditions and by subsequent heat treatment. The presence of Ca and As vacancies and FeAs nanoprecipitates affect the mechanical behavior significantly. In addition, the onset stress for the collapsed tetragonal transition decreases gradually as the temperature decreases. These experimental results are discussed primarily in terms of the formation of As-As bonds, which is the essential feature of this mechanism for superelasticity. Our research outcomes provide a more fundamental understanding of the superelasticity exhibited by CaFe2As2 under uni-axial compression. Display omitted