Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Evidence for suprathermal i...
    Hartouni, E. P.; Moore, A. S.; Crilly, A. J.; Appelbe, B. D.; Amendt, P. A.; Baker, K. L.; Casey, D. T.; Clark, D. S.; Döppner, T.; Eckart, M. J.; Field, J. E.; Gatu-Johnson, M.; Grim, G. P.; Hatarik, R.; Jeet, J.; Kerr, S. M.; Kilkenny, J.; Kritcher, A. L.; Meaney, K. D.; Milovich, J. L.; Munro, D. H.; Nora, R. C.; Pak, A. E.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Schlossberg, D. J.; Sepke, S. M.; Spears, B. K.; Young, C. V.; Zylstra, A. B.

    Nature physics, 01/2023, Letnik: 19, Številka: 1
    Journal Article

    At the National Ignition Facility, inertial confinement fusion experiments aim to burn and ignite a hydrogen plasma to generate a net source of energy through the fusion of deuterium and tritium ions. The energy deposited by α-particles released from the deuterium–tritium fusion reaction plays the central role in heating the fuel to achieve a sustained thermonuclear burn. In the hydrodynamic picture, α-heating increases the temperature of the plasma, leading to increased reactivity because the mean ion kinetic energy increases. Therefore, the ion temperature is related to the mean ion kinetic energy. Here we use the moments of the neutron spectrum to study the relationship between the ion temperature (measured by the variance in the neutron kinetic energy spectrum) and the ion mean kinetic energy (measured by the shift in the mean neutron energy). We observe a departure from the relationship expected for plasmas where the ion relative kinetic energy distribution is Maxwell–Boltzmann, when the plasma begins to burn. Understanding the cause of this departure from hydrodynamic behaviour could be important for achieving robust and reproducible ignition.Inertial confinement fusion experiments reveal a departure from the expected hydrodynamic behaviour of a plasma when the fusion reactions become the primary source of plasma heating.