Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Structural basis for assemb...
    Kim, Hyojin; Fu, Yaoyao; Hong, Ho Jeong; Lee, Seong-Gyu; Lee, Dong Sun; Kim, Ho Min

    Nature communications, 07/2022, Letnik: 13, Številka: 1
    Journal Article

    Abstract Insulin-like growth factors (IGFs) have pleiotropic roles in embryonic and postnatal growth and differentiation. Most serum IGFs are bound in a ternary complex with IGF-binding protein 3 (IGFBP3) and acid-labile subunit (ALS), extending the serum half-life of IGFs and regulating their availability. Here, we report cryo-EM structure of the human IGF1/IGFBP3/ALS ternary complex, revealing the detailed architecture of a parachute-like ternary complex and crucial determinants for their sequential and specific assembly. In vitro biochemical studies show that proteolysis at the central linker domain of IGFBP3 induces release of its C-terminal domain rather than IGF1 release from the ternary complex, yielding an intermediate complex that enhances IGF1 bioavailability. Our results provide mechanistic insight into IGF/IGFBP3/ALS ternary complex assembly and its disassembly upon proteolysis for IGF bioavailability, suggesting a structural basis for human diseases associated with IGF1 and IGFALS gene mutations such as complete ALS deficiency (ACLSD) and IGF1 deficiency.