Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Significant increase in for...
    Junttila, S.; Blomqvist, M.; Laukkanen, V.; Heinaro, E.; Polvivaara, A.; O’Sullivan, H.; Yrttimaa, T.; Vastaranta, M.; Peltola, H.

    Forest ecology and management, 08/2024, Letnik: 565
    Journal Article

    In recent decades, increases in severe drought, heat extremes, and pest burden have contributed to increased global tree mortality. These risks are expected to be exacerbated under projected climate change. So far, observations of tree mortality are mainly based on manual field surveys with limited spatial coverage. The lack of accurate tree mortality data over large areas has limited the development and applications of tree mortality models. However, a combination of high-resolution remote sensing data, such as aerial imagery and automated imagery analysis, may provide a solution to this problem. In this study, we analysed the dynamics and drivers of forest canopy mortality in 117 366 ha of boreal forest in Southeast Finland, between 2017 and 2023. For this purpose, we first developed a fully convolutional semantic segmentation model to automatically segment forest canopy mortality from aerial imagery in 2017, 2020, and 2023 with a spatial resolution of 0.5 m. Secondly, we trained the model using a dataset consisting of 32555 canopy mortality segments manually delineated from aerial imagery from various geographic regions in Finland. The trained model showed high accuracy in detecting forest canopy mortality (with an F1 score of 0.86–0.93) when tested using an independent test set. To estimate standing deadwood volume, we combined the observed yearly forest canopy mortality with open forest resource information based on extensive field campaigns and airborne laser scanning. In our study area, forest canopy mortality increased from 23.4 ha (0.02 % of the study area) to 207.8 ha (0.18 %) between 2017 and 2023. Consequently, standing deadwood volume was estimated to increase from 5192 m3 (0.04 m3/ha) to 52800 m3 (0.45 m3/ha) during the study period. Both the volume of standing deadwood and the extent of forest canopy mortality increased exponentially. The majority of the forest canopy mortality occurred in Norway spruce-dominated forests (64.1–77.3 %) on relatively fertile soils (81.6–84.7 %) while 20–25 % of the forest canopy mortality occurred in Scots pine-dominated forests. The average age of stands where mortality was observed was between 60 and 70 years old (2017 = 69.7 years and 2023 = 62.6 years), indicating that mature forests were more susceptible to mortality than younger stands. Our findings highlight an exponential increase in forest canopy mortality over a relatively short time span (6 years). The increasing risk of tree mortality in boreal forests underlines the urgent need for large-scale and spatially accurate monitoring to keep up to date with fast-paced changes in boreal forest mortality. As climate change increases drought, extreme heat and bark beetle outbreaks, consistent canopy mortality mapping is essential for implementing timely risk management measures in forestry. •Forest canopy mortality increased by 788 % between 2017 and 2023.•Distribution of canopy mortality shifted towards younger forest stands.•Forest canopy mortality detected with an F1-score of 0.86–0.93 from aerial imagery.