Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Aerosol Constraints on the ...
    Cubillos, Patricio E.; Fossati, Luca; Erkaev, Nikolai V.; Malik, Matej; Tokano, Tetsuya; Lendl, Monika; Johnstone, Colin P.; Lammer, Helmut; Wyttenbach, Aurélien

    The Astrophysical journal, 11/2017, Letnik: 849, Številka: 2
    Journal Article

    The strong, nearly wavelength-independent absorption cross section of aerosols produces featureless exoplanet transmission spectra, limiting our ability to characterize their atmospheres. Here, we show that even in the presence of featureless spectra, we can still characterize certain atmospheric properties. Specifically, we constrain the upper and lower pressure boundaries of aerosol layers, and present plausible composition candidates. We study the case of the bloated Saturn-mass planet WASP-49 b, where near-infrared observations reveal a flat transmission spectrum between 0.7 and 1.0 m. First, we use a hydrodynamic upper-atmosphere code to estimate the pressure reached by the ionizing stellar high-energy photons at bar, setting the upper pressure boundary where aerosols could exist. Then, we combine HELIOS and Pyrat Bay radiative-transfer models to constrain the temperature and photospheric pressure of atmospheric aerosols, in a Bayesian framework. For WASP-49 b, we constrain the transmission photosphere (hence, the aerosol deck boundaries) to pressures above bar (100× solar metallicity), bar (solar), and bar (0.1× solar) as the lower boundary, and below bar as the upper boundary. Lastly, we compare condensation curves of aerosol compounds with the planet's pressure-temperature profile to identify plausible condensates responsible for the absorption. Under these circumstances, we find these candidates: (at 100× solar metallicity); Cr and MnS (at solar and 0.1× solar); and forsterite, enstatite, and alabandite (at 0.1× solar).