Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • THE 2015 DECAY OF THE BLACK...
    Plotkin, R. M.; Miller-Jones, J. C. A.; Gallo, E.; Jonker, P. G.; Homan, J.; Tomsick, J. A.; Kaaret, P.; Russell, D. M.; Heinz, S.; Hodges-Kluck, E. J.; Markoff, S.; Sivakoff, G. R.; Altamirano, D.; Neilsen, J.

    The Astrophysical journal, 01/2017, Letnik: 834, Številka: 2
    Journal Article

    ABSTRACT We present simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cygni at the end of its 2015 outburst. From 2015 July 11-August 5, we monitored V404 Cygni with Chandra, Swift, and NuSTAR in the X-ray, and with the Karl G. Jansky Very Large Array and the Very Long Baseline Array in the radio, spanning a range of luminosities that were poorly covered during its previous outburst in 1989 (our 2015 campaign covers ). During our 2015 campaign, the X-ray spectrum evolved rapidly from a hard photon index of (at ) to a softer (at ). We argue that V404 Cygni reaching marks the beginning of the quiescent spectral state, which occurs at a factor of 3-4 higher X-ray luminosity than the average pre-outburst luminosity of . V404 Cygni falls along the same radio/X-ray luminosity correlation that it followed during its previous outburst in 1989, implying a robust disk-jet coupling. We exclude the possibility that a synchrotron-cooled jet dominates the X-ray emission in quiescence, leaving synchrotron self-Compton from either a hot accretion flow or from a radiatively cooled jet as the most likely sources of X-ray radiation, and/or particle acceleration along the jet becoming less efficient in quiescence. Finally, we present the first indications of correlated radio and X-ray variability on minute timescales in quiescence, tentatively measuring the radio emission to lag the X-ray by minute, suggestive of X-ray variations propagating down a jet with a length of <3.0 au.