Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Activation of Central Orexi...
    Karnani, Mahesh M.; Apergis-Schoute, John; Adamantidis, Antoine; Jensen, Lise T.; de Lecea, Luis; Fugger, Lars; Burdakov, Denis

    Neuron (Cambridge, Mass.), 11/2011, Letnik: 72, Številka: 4
    Journal Article

    Hypothalamic orexin/hypocretin (orx/hcrt) neurons regulate energy balance, wakefulness, and reward; their loss produces narcolepsy and weight gain. Glucose can lower the activity of orx/hcrt cells, but whether other dietary macronutrients have similar effects is unclear. We show that orx/hcrt cells are stimulated by nutritionally relevant mixtures of amino acids (AAs), both in brain slice patch-clamp experiments, and in c-Fos expression assays following central or peripheral administration of AAs to mice in vivo. Physiological mixtures of AAs electrically excited orx/hcrt cells through a dual mechanism involving inhibition of KATP channels and activation of system-A amino acid transporters. Nonessential AAs were more potent in activating orx/hcrt cells than essential AAs. Moreover, the presence of physiological concentrations of AAs suppressed the glucose responses of orx/hcrt cells. These results suggest a new mechanism of hypothalamic integration of macronutrient signals and imply that orx/hcrt cells sense macronutrient balance, rather than net energy value, in extracellular fluid. ► Brain orexin/hypocretin cells are stimulated by dietary amino acids (AAs) ► AA sensing involves K-ATP channels and system-A transporters ► Nonessential AAs stimulate orexin/hypocretin cells more than essential AAs ► AA presence prevents glucose from blocking orexin/hypocretin cells