Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Time-Dependent Nanomechanic...
    Han, Lin; Frank, Eliot H.; Greene, Jacqueline J.; Lee, Hsu-Yi; Hung, Han-Hwa K.; Grodzinsky, Alan J.; Ortiz, Christine

    Biophysical journal, 04/2011, Letnik: 100, Številka: 7
    Journal Article

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus Eind, force-relaxation time constant τ, magnitude of dynamic complex modulus |E∗|, phase angle δ between force and indentation depth, storage modulus E′, and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E∗| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E∗| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E∗| at nanometer-scale deformation.