Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Preparation of energy effic...
    Chung, Okyoung; Jeong, Su-Gwang; Kim, Sumin

    Solar energy materials and solar cells, 06/2015, Letnik: 137
    Journal Article

    This paper deals with the preparation, characterization, thermal properties and thermal reliability of form-stable composite phase change materials (PCMs), composed of n-octadecane, expanded vermiculite, and perlite for thermal energy storage. The composite PCMs were prepared by incorporation of liquid n-octadecane within the expanded vermiculite (eVMT) and expanded perlite (ePLT), using a vacuum impregnation method. The microstructures of n-octadecane/expanded vermiculite and pearlite were characterized by scanning electron microscopy (SEM). Analysis of Fourier transform infrared spectroscopy (FT-IR) of the prepared composite PCMs showed good compatibility between n-octadecane and the expanded vermiculite and pearlite. The thermal conductivities of composites were reduced, based on the TCi results. Differential scanning calorimetry (DSC) analysis indicated that the n-octadecane/eVMT and n-odtadecane/ePLT composites maintained their large latent heat capacity and original phase change temperatures, due to large surface area and good dispersion of the eVMT and ePLT. TGA analysis revealed that the prepared composite PCMs had good thermal durability in the working temperature ranges. Therefore, n-octadecane based composite PCMs can be considered as suitable candidates for latent heat thermal energy storage, with high thermal performance. •Paraffinic PCMs/expanded vermiculite and perlite composites were prepared for efficient thermal energy storage.•The composite PCMs were prepared by incorporation of liquid n-octadecane using a vacuum impregnation method.•The composite PCMs showed good dispersion and compatibility.•The composite PCMs maintained good thermal properties.