Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Novel Automated Biomarker D...
    Balog, Crina I; Hensbergen, Paul J; Derks, Rico; Verweij, Jaco J; van Dam, Govert J; Vennervald, Birgitte J; Deelder, Andre M; Mayboroda, Oleg A

    Clinical chemistry, 01/2009, Letnik: 55, Številka: 1
    Journal Article

    Urine is potentially a rich source of peptide biomarkers, but reproducible, high-throughput peptidomic analysis is often hampered by the inherent variability in factors such as pH and salt concentration. Our goal was to develop a generally applicable, rapid, and robust method for screening large numbers of urine samples, resulting in a broad spectrum of native peptides, as a tool to be used for biomarker discovery. Peptide samples were trapped, desalted, pH-normalized, and fractionated on a miniaturized automatic reverse-phase strong cation exchange (RP-SCX) cartridge system. We analyzed eluted peptides using MALDI-TOF, Fourier transform ion cyclotron resonance, and liquid chromatography-iontrap mass spectrometry. We determined qualitative and quantitative reproducibility of the system and robustness of the method using BSA digests and urine samples, and we used a selected set of urine samples from Schistosoma haematobium-infected individuals to evaluate clinical applicability. The automated RP-SCX sample cleanup and fractionation system exhibits a high qualitative and quantitative reproducibility, with both BSA standards and urine samples. Because of the relatively high cartridge binding capacity (1-2 mL urine), eluted peptides can be measured with high sensitivity using multiple mass spectrometric techniques. As proof of principle, hemoglobin-derived peptides were identified in urine samples from S. haematobium-infected individuals, even when the microhematuria test was negative. We present a practical, step-by-step method for screening and identification of urinary peptides. Alongside the analytical method evaluation on standard samples, we demonstrate its feasibility with actual clinical material.