Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • HookA is a novel dynein-ear...
    Zhang, Jun; Qiu, Rongde; Arst, Jr, Herbert N; Peñalva, Miguel A; Xiang, Xin

    The Journal of cell biology, 03/2014, Letnik: 204, Številka: 6
    Journal Article

    Cytoplasmic dynein transports membranous cargoes along microtubules, but the mechanism of dynein-cargo interaction is unclear. From a genetic screen, we identified a homologue of human Hook proteins, HookA, as a factor required for dynein-mediated early endosome movement in the filamentous fungus Aspergillus nidulans. HookA contains a putative N-terminal microtubule-binding domain followed by coiled-coil domains and a C-terminal cargo-binding domain, an organization reminiscent of cytoplasmic linker proteins. HookA-early endosome interaction occurs independently of dynein-early endosome interaction and requires the C-terminal domain. Importantly, HookA interacts with dynein and dynactin independently of HookA-early endosome interaction but dependent on the N-terminal part of HookA. Both dynein and the p25 subunit of dynactin are required for the interaction between HookA and dynein-dynactin, and loss of HookA significantly weakens dynein-early endosome interaction, causing a virtually complete absence of early endosome movement. Thus, HookA is a novel linker important for dynein-early endosome interaction in vivo.