Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Atg39 binding to the inner ...
    Mochida, Keisuke; Nakatogawa, Hitoshi

    Autophagy, 12/2022, Letnik: 18, Številka: 12
    Journal Article

    Recent studies have revealed that even the nucleus can be degraded by selective macroautophagy (hereafter macronucleophagy). In Saccharomyces cerevisiae, the nuclear envelope (NE) protein Atg39 acts as a macronucleophagy receptor that mediates sequestration of nucleus-derived double-membrane vesicles (NDVs) into phagophores. The outer and inner membranes of these NDVs are derived from the outer and inner nuclear membranes (ONM and INM), respectively, and the lumen contains nucleoplasmic material. Little was known about the mechanisms underlying macronucleophagy, including how the two nuclear membranes are coordinately deformed to generate NDVs and what nuclear components are preferentially loaded into or rather eliminated from NDVs. We found that Atg39 links the ONM and INM through the ONM-embedded transmembrane domain and INM-associated amphipathic helices (APHs). These APHs are important for Atg39 anchoring to the NE and autophagosome formation-coupled Atg39 clustering in the NE. In addition, the overaccumulation of Atg39 in the NE caused NE protrusion toward the cytoplasm depending on the APHs. These results allowed us to propose the mechanism by which Atg39 conducts NDV formation in coordination with autophagosome formation during macronucleophagy.