Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Biogenic nanobubbles for ef...
    Song, Lin; Wang, Guohao; Hou, Xuandi; Kala, Shashwati; Qiu, Zhihai; Wong, Kin Fung; Cao, Fei; Sun, Lei

    Acta biomaterialia, 20/May , Letnik: 108
    Journal Article

    Tumor hypoxia is believed to be a factor limiting successful outcomes of oxygen-consuming cancer therapy, thereby reducing patient survival. A key strategy to overcome tumor hypoxia is to increase the prevalence of oxygen at the tumor site. Oxygen-containing microbubbles/nanobubbles have been developed to supply oxygen and enhance the effects of therapies such as radiotherapy and photodynamic therapy. However, the application of these bubbles is constrained by their poor stability, requiring major workarounds to increase their half-lives. In this study, we explore the potential of biogenic gas vesicles (GVs) as a new kind of oxygen carrier to alleviate tumor hypoxia. GVs, which are naturally formed, gas-filled, protein-shelled compartments, were modified on the surface of their protein shells by a layer of liposome. A substantial improvement of oxygen concentration was observed in hypoxic solution, in hypoxic cells, as well as in subcutaneous tumors when lipid-GVs(O2) were added/tail-injected. Significant enhancement of tumor cell apoptosis and necrosis was also observed during photodynamic therapy (PDT) in the presence of lipid-GVs(O2) both in vitro and in vivo. Lipid-GVs(O2) alone induced no obvious change in cell viability in vitro or any apparent pathological abnormalities after mice were tail-injected with them. In all, lipid-GVs exhibited promising performance for intravenous gas delivery, enhanced PDT efficacy and low toxicity, a quality that may be applied to alleviate hypoxia in cancers, as well as hypoxia-related clinical treatments. The development of stable oxygen-filled micro/nanobubbles capable of delivering oxygen to tumor sites is a major hurdle to enhancing the efficacy of cancer therapy. Currently, micro/nanobubbles are limited by their instability when oxygen is encapsulated, creating a large pressure gradient and surface tension. To improve stability, we modified the surfaces of GVs, a biogenic stable nanoscale hollow structure, as a new class of oxygen carriers. Lipid-coated GVs were found to be stable in solution and effective O2 carriers. This will overcome the limitations of coalescence, short circulation time of synthetic bubbles during application. Our surface-modified GVs demonstrated low toxicity in vitro cell in vivo, while also being able to overcome hypoxia-associated therapy resistance when combined with photodynamic therapy. Display omitted