Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Metal-insulator transition ...
    Klein, T.; Achatz, P.; Kacmarcik, J.; Marcenat, C.; Gustafsson, F.; Marcus, J.; Bustarret, E.; Pernot, J.; Omnes, F.; Sernelius, Bo E.; Persson, C.; Ferreira da Silva, A.; Cytermann, C.

    Physical review. B, Condensed matter and materials physics, 04/2007, Letnik: 75, Številka: 16
    Journal Article

    We report on a detailed analysis of the transport properties and superconducting critical temperatures of boron-doped diamond films grown along the $\{100\}$ direction. The system presents a metal-insulator transition (MIT) for a boron concentration ($n_B$) on the order of $n_c \sim 4.5 \times 10^{20}$ cm$^{-3}$ in excellent agreement with numerical calculations. The temperature dependence of the conductivity and Hall effect can be well described by variable range hopping for $n_B n_c$) present a superconducting transition at low temperature. The zero temperature conductivity $\sigma_0$ deduced from fits to the data above the critical temperature ($T_c$) using a classical quantum interference formula scales as : $\sigma_0 \propto (n_B/n_c-1)^\nu$ with $\nu \sim 1$. Large $T_c$ values ($\geq 0.4$ K) have been obtained for boron concentration down to $n_B/n_c \sim 1.1$ and $T_c$ surprisingly mimics a $(n_B/n_c-1)^{1/2}$ law. Those high $T_c$ values can be explained by a slow decrease of the electron-phonon coupling parameter $\lambda$ and a corresponding drop of the Coulomb pseudo-potential $\mu^*$ as $n_B \rightarrow n_c$.