Akademska digitalna zbirka SLovenije - logo
E-viri
  • Alkaloid extracts from Comb...
    Nyambuya, Tafadzwa; Mautsa, Ruvimbo; Mukanganyama, Stanley

    BMC complementary and alternative medicine, 02/2017, Letnik: 17, Številka: 1
    Journal Article

    Current tuberculosis regimens have failed to combat the issue of drug resistance and ethno medicines may represent a possible source of antimycobacterial agents. Combretum species are well known in African traditional medicines and used for various ailments including pneumonia, venereal diseases like syphilis, mental problems, relief of sore throats and colds, fever, and chest coughs associated with tuberculosis. Alkaloids function as either hydrogen-acceptor or hydrogen-donor in hydrogen bonding critical for the interaction between targets thus, potentiating effects of curative agents on diseases. Alkaloid extracts from leaves of Combretum zeyheri, Combretum platypetalum, Combretum molle and Combretum apiculatum, were assessed for antimycobacterial activity to establish rationale for their use in traditional medicines for various ailments including pneumonia, relief of sore throats and colds, fever, and chest coughs associated with tuberculosis. Alkaloids were extracted from the leaves of Combretum zeyheri, Combretum platypetalum, Combretum molle and Combretum apiculatum. The broth microdilution method was used for the screening of growth inhibitory activity. The standard drug rifampicin was used as the positive control. Alkaloid extracts from the most potent plant species, Combretum zeyheri were further investigated for time-kill dependency effects on drug transport in Mycobacterium smegmatis. Using the broth microdilution susceptibility method, C. zeyheri alkaloid extract, was found to have the most antimycobacterial effects with an MIC value of 125 μg/ml whilst MICs for C. molle and C. platypetalum were above 1000 μg/ml. An MBC value of 250 μg/ml was observed with alkaloid extracts from Combretum zeyheri whilst the remaining three Combretum species showed no bactericidal activity. It was also shown that C. zeyheri had potential efflux pump inhibitory activity. Determination of the time-kill kinetics of extracts from C. zeyheri showed not only a concentration-dependent activity but time-dependent bactericidal effect as well. Alkaloid extracts from the leaves of C. zeyheri have potential as a source of lead compounds that may be developed further into antimycobacterial compounds. The mechanism of action of may be due to inhibition of transport across the cell membrane. Further work needs to be done to isolate the active components in these extracts.