Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • The mechanism of sirtuin 2-...
    de Oliveira, Rita Machado; Vicente Miranda, Hugo; Francelle, Laetitia; Pinho, Raquel; Szegö, Éva M; Martinho, Renato; Munari, Francesca; Lázaro, Diana F; Moniot, Sébastien; Guerreiro, Patrícia; Fonseca-Ornelas, Luis; Marijanovic, Zrinka; Antas, Pedro; Gerhardt, Ellen; Enguita, Francisco Javier; Fauvet, Bruno; Penque, Deborah; Pais, Teresa Faria; Tong, Qiang; Becker, Stefan; Kügler, Sebastian; Lashuel, Hilal Ahmed; Steegborn, Clemens; Zweckstetter, Markus; Outeiro, Tiago Fleming

    PLoS biology, 03/2017, Letnik: 15, Številka: 3
    Journal Article

    Sirtuin genes have been associated with aging and are known to affect multiple cellular pathways. Sirtuin 2 was previously shown to modulate proteotoxicity associated with age-associated neurodegenerative disorders such as Alzheimer and Parkinson disease (PD). However, the precise molecular mechanisms involved remain unclear. Here, we provide mechanistic insight into the interplay between sirtuin 2 and α-synuclein, the major component of the pathognomonic protein inclusions in PD and other synucleinopathies. We found that α-synuclein is acetylated on lysines 6 and 10 and that these residues are deacetylated by sirtuin 2. Genetic manipulation of sirtuin 2 levels in vitro and in vivo modulates the levels of α-synuclein acetylation, its aggregation, and autophagy. Strikingly, mutants blocking acetylation exacerbate α-synuclein toxicity in vivo, in the substantia nigra of rats. Our study identifies α-synuclein acetylation as a key regulatory mechanism governing α-synuclein aggregation and toxicity, demonstrating the potential therapeutic value of sirtuin 2 inhibition in synucleinopathies.