Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Computational design of a s...
    Terada, Daiki; Voet, Arnout R D; Noguchi, Hiroki; Kamata, Kenichi; Ohki, Mio; Addy, Christine; Fujii, Yuki; Yamamoto, Daiki; Ozeki, Yasuhiro; Tame, Jeremy R H; Zhang, Kam Y J

    Scientific reports, 07/2017, Letnik: 7, Številka: 1
    Journal Article

    Computational protein design has advanced very rapidly over the last decade, but there remain few examples of artificial proteins with direct medical applications. This study describes a new artificial β-trefoil lectin that recognises Burkitt's lymphoma cells, and which was designed with the intention of finding a basis for novel cancer treatments or diagnostics. The new protein, called "Mitsuba", is based on the structure of the natural shellfish lectin MytiLec-1, a member of a small lectin family that uses unique sequence motifs to bind α-D-galactose. The three subdomains of MytiLec-1 each carry one galactose binding site, and the 149-residue protein forms a tight dimer in solution. Mitsuba (meaning "three-leaf" in Japanese) was created by symmetry constraining the structure of a MytiLec-1 subunit, resulting in a 150-residue sequence that contains three identical tandem repeats. Mitsuba-1 was expressed and crystallised to confirm the X-ray structure matches the predicted model. Mitsuba-1 recognises cancer cells that express globotriose (Galα(1,4)Galβ(1,4)Glc) on the surface, but the cytotoxicity is abolished.