Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Modeling of partial dome co...
    Peruzzetto, Marc; Komorowski, Jean-Christophe; Le Friant, Anne; Rosas-Carbajal, Marina; Mangeney, Anne; Legendre, Yoann

    Scientific reports, 09/2019, Letnik: 9, Številka: 1
    Journal Article

    Over the past 9,150 years, at least 9 flank collapses have been identified in the history of La Soufrière of Guadeloupe volcano. On account of the volcano's current unrest, the possibility of such a flank collapse should not be dismissed in assessing hazards for future eruptive magmatic as well as non-magmatic scenarios. We combine morphological and geophysical data to identify seven unstable structures (volumes ranging from 1 × 10 m to 100 × 10 m ), including one that has a volume compatible with the last recorded flank collapse in 1530 CE. We model their dynamics and emplacement with the SHALTOP numerical model and a simple Coulomb friction law. The best-fit friction coefficient to reproduce the 1530 CE event is tan(7°) = 0.13, suggesting the transformation of the debris avalanche into a debris flow, which is confirmed by the texture of mapped deposits. Various friction angles are tested to investigate less water-rich and less mobile avalanches. The most densely populated areas of Saint-Claude and Basse-Terre, and an area of Gourbeyre south of the Palmiste ridge, are primarily exposed in the case of the more voluminous and mobile flank collapse scenarios considered. However, topography has a prominent role in controlling flow dynamics, with barrier effects and multiple channels. Classical mobility indicators, such as the Heim's ratio, are thus not adequate for a comprehensive hazard analysis.