Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Loss-of-function mutations ...
    Logan, Clare V; Szabadkai, György; Sharpe, Jenny A; Parry, David A; Torelli, Silvia; Childs, Anne-Marie; Kriek, Marjolein; Phadke, Rahul; Johnson, Colin A; Roberts, Nicola Y; Bonthron, David T; Pysden, Karen A; Whyte, Tamieka; Munteanu, Iulia; Foley, A Reghan; Wheway, Gabrielle; Szymanska, Katarzyna; Natarajan, Subaashini; Abdelhamed, Zakia A; Morgan, Joanne E; Roper, Helen; Santen, Gijs W E; Niks, Erik H; van der Pol, W Ludo; Lindhout, Dick; Raffaello, Anna; De Stefani, Diego; den Dunnen, Johan T; Sun, Yu; Ginjaar, Ieke; Sewry, Caroline A; Hurles, Matthew; Rizzuto, Rosario; Duchen, Michael R; Muntoni, Francesco; Sheridan, Eamonn

    Nature genetics, 02/2014, Letnik: 46, Številka: 2
    Journal Article

    Mitochondrial Ca(2+) uptake has key roles in cell life and death. Physiological Ca(2+) signaling regulates aerobic metabolism, whereas pathological Ca(2+) overload triggers cell death. Mitochondrial Ca(2+) uptake is mediated by the Ca(2+) uniporter complex in the inner mitochondrial membrane, which comprises MCU, a Ca(2+)-selective ion channel, and its regulator, MICU1. Here we report mutations of MICU1 in individuals with a disease phenotype characterized by proximal myopathy, learning difficulties and a progressive extrapyramidal movement disorder. In fibroblasts from subjects with MICU1 mutations, agonist-induced mitochondrial Ca(2+) uptake at low cytosolic Ca(2+) concentrations was increased, and cytosolic Ca(2+) signals were reduced. Although resting mitochondrial membrane potential was unchanged in MICU1-deficient cells, the mitochondrial network was severely fragmented. Whereas the pathophysiology of muscular dystrophy and the core myopathies involves abnormal mitochondrial Ca(2+) handling, the phenotype associated with MICU1 deficiency is caused by a primary defect in mitochondrial Ca(2+) signaling, demonstrating the crucial role of mitochondrial Ca(2+) uptake in humans.