Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • C3 glomerulopathy-associate...
    Tortajada, Agustín; Yébenes, Hugo; Abarrategui-Garrido, Cynthia; Anter, Jaouad; García-Fernández, Jesús M; Martínez-Barricarte, Rubén; Alba-Domínguez, María; Malik, Talat H; Bedoya, Rafael; Cabrera Pérez, Rocío; López Trascasa, Margarita; Pickering, Matthew C; Harris, Claire L; Sánchez-Corral, Pilar; Llorca, Oscar; Rodríguez de Córdoba, Santiago

    The Journal of clinical investigation, 06/2013, Letnik: 123, Številka: 6
    Journal Article

    C3 glomerulopathies (C3G) are a group of severe renal diseases with distinct patterns of glomerular inflammation and C3 deposition caused by complement dysregulation. Here we report the identification of a familial C3G-associated genomic mutation in the gene complement factor H–related 1 (CFHR1), which encodes FHR1. The mutation resulted in the duplication of the N-terminal short consensus repeats (SCRs) that are conserved in FHR2 and FHR5. We determined that native FHR1, FHR2, and FHR5 circulate in plasma as homo- and hetero-oligomeric complexes, the formation of which is likely mediated by the conserved N-terminal domain. In mutant FHR1, duplication of the N-terminal domain resulted in the formation of unusually large multimeric FHR complexes that exhibited increased avidity for the FHR1 ligands C3b, iC3b, and C3dg and enhanced competition with complement factor H (FH) in surface plasmon resonance (SPR) studies and hemolytic assays. These data revealed that FHR1, FHR2, and FHR5 organize a combinatorial repertoire of oligomeric complexes and demonstrated that changes in FHR oligomerization influence the regulation of complement activation. In summary, our identification and characterization of a unique CFHR1 mutation provides insights into the biology of the FHRs and contributes to our understanding of the pathogenic mechanisms underlying C3G.