Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Odprti dostop
  • Besson, D; Jenkins, J; Matsuno, S; Nam, J; Smith, M; Barwick, S W; Beatty, J J; Binns, W R; Chen, C; Chen, P; Clem, J M; Connolly, A; Dowkontt, P F; DuVernois, M A; Field, R C; Goldstein, D; Gorham, P W; Goodhue, A; Hast, C; Hebert, C L; Hoover, S; Israel, M H; Kowalski, J; Learned, J G; Liewer, K M; Link, J T; Lusczek, E; Mercurio, B; Miki, C; Miocinovic, P; Naudet, C J; J Ng; Nichol, R; Palladino, K; Reil, K; Romero-Wolf, A; Rosen, M; Ruckman, L; Saltzberg, D; Seckel, D; Varner, G S; Walz, D; F Wu

    arXiv.org, 10/2008
    Paper

    Radiowave detection of the Cherenkov radiation produced by neutrino-ice collisions requires an understanding of the radiofrequency (RF) response of cold polar ice. We herein report on a series of radioglaciological measurements performed approximately 10 km north of Taylor Dome Station, Antarctica from Dec. 6, 2006 - Dec. 16, 2006. Using RF signals broadcast from: a) an englacial discone, submerged to a depth of 100 meters and broadcasting to a surface dual polarization horn receiver, and b) a dual-polarization horn antenna on the surface transmitting signals which reflect off the underlying bed and back up to the surface receiver, we have made time-domain estimates of both the real (index-of-refraction) and imaginary (attenuation length) components of the complex ice dielectric constant. We have also measured the uniformity of ice response along two orthogonal axes in the horizontal plane. We observe a wavespeed asymmetry of order 0.1%, projected onto the vertical propagation axis, consistent with some previous measurements, but somewhat lower than others.