Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Effect of increased fire ac...
    Oris, France; Asselin, Hugo; Ali, Adam A.; Finsinger, Walter; Bergeron, Yves

    Environmental reviews, 09/2014, Letnik: 22, Številka: 3
    Journal Article

    Forest fires are an important disturbance in the boreal forest. They are influenced by climate, weather, topography, vegetation, surface deposits, and human activities. In return, forest fires affect the climate through emission of gases and aerosols, and changes in surface albedo, soil processes, and vegetation dynamics. The net effect of these factors is not yet well established but seems to have caused a negative feedback on climate during the 20th century. However, an increase in boreal forest fires is predicted by the end of the 21st century, possibly changing the effect of fires on climate change to a positive feedback that would exacerbate global warming. This review presents (1) an overview of fire regimes and vegetation succession in boreal forests; (2) the effects on climate of combustion emissions and post-fire changes in ecosystem functioning; (3) the effects of fire regime variations on climate, especially on carbon stock and surface albedo; (4) an integrative approach of fire effects on climate dynamics; and (5) the implications of increased fire activity on global warming by calculating the radiative forcing of several factors by 2100 in the boreal region, before discussing the results and exposing the limits of the data at hand. Generally, losses of carbon from forest fires in the boreal region will increase in the future and their effect on the carbon stock (0.37 W/m2/decade) will be greater than the effect of fire on surface albedo (−0.09 W/m2/decade). The net effect of aerosol emissions from boreal fires will likely cause a positive feedback on global warming. This review emphasizes the importance of feedbacks between fires and climate in the boreal forest. It presents limitations and uncertainties to be addressed in future studies, particularly with regards to the effect of CO2fertilization on forest productivity, which could offset or mitigate the effect of fire.