Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Soil bacterial community dy...
    Wolf, D.C.; Cryder, Z.; Gan, J.

    Chemosphere, 09/2019, Letnik: 231
    Journal Article

    Because of their toxic properties, polycyclic aromatic hydrocarbons (PAHs) are designated as priority pollutants. The low solubility and strong sorption of PAHs in soil often limits bioremediation. To increase PAH bioavailability and enhance microbial degradation, surfactants are often added to contaminated soils. However, the effects of surfactants on the PAH degradation capacities of soil microbes are generally neglected. In this study, 16S rRNA gene high-throughput sequencing was used to evaluate changes in the soil microbial community after the application of rhamnolipid biosurfactant or Brij-35 surfactant and Mycobacterium vanbaalenii PYR-1 bioaugmentation over a 50-d mineralization study in two soils contaminated with pyrene at 10 mg kg−1. The introduction of pyrene in both soils resulted in an increase in Firmicutes and a decrease in microbial richness and Shannon diversity index. Amendment of rhamnolipid at 1,400 μg g−1 to the native clay soil resulted in a decrease in Bacillus from 48% to 2%, which was accompanied with an increase in Mycoplana that accounted for 67% of the total genera relative abundance. Phylogenetic investigation of communities by reconstruction of unobserved states was used to predict the activity of functional genes involved in the PAH degradation KEGG pathway and determined that M. vanbaalenii PYR-1 bioaugmentation resulted in an increased number of functional genes utilized in PAH biodegradation. Results of this study provide a better understanding of the soil microbial dynamics in response to surfactant amendments in addition to bioaugmentation of a PAH-degrading microbe. This knowledge contributes to successful and efficient surfactant-enhanced bioremediation of PAH-contaminated soils. •Pyrene addition in both untreated soils increased Firmicutes relative abundance.•Bacillus, a known PAH-degrading soil microbe, accounted for the majority of Firmicutes.•Mycoplana preferentially utilized rhamnolipid as carbon source instead of pyrene. Display omitted