Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Waste-to-nutrition: a revie...
    Javourez, U.; O’Donohue, M.; Hamelin, L.

    Biotechnology advances, December 2021, 2021-12-00, 20211201, 2021-12, Letnik: 53
    Journal Article

    Residual biomass is acknowledged as a key sustainable feedstock for the transition towards circular and low fossil carbon economies to supply whether energy, chemical, material and food products or services. The latter is receiving increasing attention, in particular in the perspective of decoupling nutrition from arable land demand. In order to provide a comprehensive overview of the technical possibilities to convert residual biomasses into edible ingredients, we reviewed over 950 scientific and industrial records documenting existing and emerging waste-to-nutrition pathways, involving over 150 different feedstocks here grouped under 10 umbrella categories: (i) wood-related residual biomass, (ii) primary crop residues, (iii) manure, (iv) food waste, (v) sludge and wastewater, (vi) green residual biomass, (vii) slaughterhouse by-products, (viii) agrifood co-products, (ix) C1 gases and (x) others. The review includes a detailed description of these pathways, as well as the processes they involve. As a result, we proposed four generic building blocks to systematize waste-to-nutrition conversion sequence patterns, namely enhancement, cracking, extraction and bioconversion. We further introduce a multidimensional representation of the biomasses suitability as potential as nutritional sources according to (i) their content in anti-nutritional compounds, (ii) their degree of structural complexity and (iii) their concentration of macro- and micronutrients. Finally, we suggest that the different pathways can be grouped into eight large families of approaches: (i) insect biorefinery, (ii) green biorefinery, (iii) lignocellulosic biorefinery, (iv) non-soluble protein recovery, (v) gas-intermediate biorefinery, (vi) liquid substrate alternative, (vii) solid-substrate fermentation and (viii) more-out-of-slaughterhouse by-products. The proposed framework aims to support future research in waste recovery and valorization within food systems, along with stimulating reflections on the improvement of resources’ cascading use. •Comprehensive review of 950 waste-to-nutrition conversion pathways.•Four modular building blocks proposed to model any waste-to-nutrition pathway.•Waste-to-nutrition pathways classified into eight families of approaches.