NUK - logo
E-resources
Full text
Peer reviewed
  • Dawuti, Wubulitalifu; Dou, Jingrui; Zheng, Xiangxiang; Lü, Xiaoyi; Zhao, Hui; Yang, Lingfei; Lin, Renyong; Lü, Guodong

    Journal of biophotonics, 05/2023, Volume: 16, Issue: 5
    Journal Article

    Cystic echinococcosis (CE) in sheep is a serious zoonotic parasitic disease caused by Echinococcus granulosus sensu stricto (s.s.). Presently, the screening technology for CE in sheep is time-consuming and inaccurate, and novel screening technology is urgently needed. In this work, we combined machine-learning algorithms with Fourier transform infrared (FT-IR) spectroscopy of serum to establish a quick and accurate screening approach for CE in sheep. Serum samples from 77 E. granulosus s.s.-infected sheep to 121 healthy control sheep were measured by FT-IR spectrometer. To optimize the classification accuracy of the serum FI-TR method for the E. granulosus s.s.-infected sheep and healthy control sheep, principal component analysis (PCA), linear discriminant analysis, and support vector machine (SVM) algorithms were used to analyze the data. Among all the bands, 1500-1700 cm band has the best classification effect; its diagnostic sensitivity, specificity, and accuracy of PCA-SVM were 100%, 95.74%, and 96.66%, respectively. The study showed that serum FT-IR spectroscopy combined with machine learning algorithms has great potential for rapid and accurate screening methods for the CE in sheep.