NUK - logo
E-resources
Full text
Peer reviewed Open access
  • Target-Aware Image Denoisin...
    Gu, Jeongmin; Back, Jonghee; Yoon, Sung-Eui; Moon, Bochang

    ACM transactions on graphics, 19/07, Volume: 43, Issue: 4
    Journal Article

    Physically based differentiable rendering allows an accurate light transport simulation to be differentiated with respect to the rendering input, i.e., scene parameters, and it enables inferring scene parameters from target images, e.g., photos or synthetic images, via an iterative optimization. However, this inverse Monte Carlo rendering inherits the fundamental problem of the Monte Carlo integration, i.e., noise, resulting in a slow optimization convergence. An appealing approach to addressing such noise is exploiting an image denoiser to improve optimization convergence. Unfortunately, the direct adoption of existing image denoisers designed for ordinary rendering scenarios can drive the optimization into undesirable local minima due to denoising bias. It motivates us to reformulate a new image denoiser specialized for inverse rendering. Unlike existing image denoisers, we conduct our denoising by considering the target images, i.e., specific information in inverse rendering. For our target-aware denoising, we determine our denoising weights via a linear regression technique using the target. We demonstrate that our denoiser enables inverse rendering optimization to infer scene parameters robustly through a diverse set of tests.