NUK - logo
E-resources
Full text
Peer reviewed
  • Adapting Japanese Lesson St...
    Moss, Joan; Hawes, Zachary; Naqvi, Sarah; Caswell, Beverly

    ZDM, 06/2015, Volume: 47, Issue: 3
    Journal Article

    Increased efforts are needed to meet the demand for high quality mathematics in early years classrooms. Despite the foundational role of geometry and spatial reasoning for later mathematics success, the strand receives inadequate instructional time and is limited to concepts of static geometry. Moreover, early years teachers typically lack both content knowledge and confidence in teaching geometry and spatial reasoning. We describe our attempt to deal with these issues through a research initiative known as the Math for Young Children project. The project integrates effective features of both design research and Japanese Lesson Study and is designed to support teachers in developing content knowledge and new approaches for teaching geometry and spatial reasoning. Central to our Professional Development model is the integration of four adaptations to the Japanese Lesson Study model: (1) teachers engaging in the mathematics, (2) teachers designing and conducting task-based clinical interviews, (3) teachers and researchers co-designing and carrying out exploratory lessons and activities, and (4) the creation of resources for other educators. We present our methods and the results of our adaptations through a case study of one Professional Learning Team. Our results suggest that the adaptations were effective in: (1) supporting teachers’ content knowledge of and comfort level with geometry and spatial reasoning, (2) increasing teachers’ perceptions of young children’s mathematical competencies, (3) increasing teachers’ awareness and commitment for the inclusion of high quality geometry and spatial reasoning as a critical component of early years mathematics, and (4) the creation of innovative resources for other educators. We conclude with theoretical considerations and implications of our results.