NUK - logo
E-resources
Peer reviewed Open access
  • Two Carotenoid Oxygenases C...
    Amengual, Jaume; Widjaja-Adhi, M. Airanthi K.; Rodriguez-Santiago, Susana; Hessel, Susanne; Golczak, Marcin; Palczewski, Krzysztof; von Lintig, Johannes

    Journal of biological chemistry/˜The œJournal of biological chemistry, 11/2013, Volume: 288, Issue: 47
    Journal Article

    Mammalian genomes encode two provitamin A-converting enzymes as follows: the β-carotene-15,15′-oxygenase (BCO1) and the β-carotene-9′,10′-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (β-15′-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzymes to provitamin A metabolism. We subjected wild type, Bco1−/−, Bco2−/−, and Bco1−/−Bco2−/− double knock-out mice to a controlled diet providing β-carotene as the sole source for apocarotenoid production. This study revealed that BCO1 is critical for retinoid homeostasis. Genetic disruption of BCO1 resulted in β-carotene accumulation and vitamin A deficiency accompanied by a BCO2-dependent production of minor amounts of β-apo-10′-carotenol (APO10ol). We found that APO10ol can be esterified and transported by the same proteins as vitamin A but with a lower affinity and slower reaction kinetics. In wild type mice, APO10ol was converted to retinoids by BCO1. We also show that a stepwise cleavage by BCO2 and BCO1 with APO10ol as an intermediate could provide a mechanism to tailor asymmetric carotenoids such as β-cryptoxanthin for vitamin A production. In conclusion, our study provides evidence that mammals employ both carotenoid oxygenases to synthesize retinoids from provitamin A carotenoids. Background: Mammalian genomes encode two carotenoid oxygenases, but their contributions to vitamin A homeostasis remain undefined. Results: Mammals employ symmetric and eccentric cleaving carotenoid oxygenases to convert different provitamin A carotenoids to vitamin A. Conclusion: Both carotenoid oxygenases contribute to vitamin A production. Significance: Carotenoids are the major source for vitamin A in the human diet.