NUK - logo
E-resources
Peer reviewed Open access
  • Dynamic Programming-Based V...
    Kim, Kwang-Il; Lee, Keon Myung

    Energies, 05/2018, Volume: 11, Issue: 5
    Journal Article

    Maritime transportation is an economic form of mass transportation, but it is associated with significant energy consumption and pollutant emissions. External forces such as tidal currents, waves, and wind strongly influence the energy efficiency of ships. The effective management of external forces can save energy and reduce emissions. This study presents a method to build an optimal speed adjustment plan for a ship to navigate a given route. The method takes a dynamic programming (DP)-based approach to finding such an optimal plan to utilize external forces. To estimate the speed changes caused by external forces, the proposed method uses the mapping information from a combined database of ship status, marine environmental conditions, and speed changes. For the efficient manipulation of externally forced speed-change information, we used MapReduce-based operations that can handle big data and support the easy retrieval of associated data in specific situations. To evaluate the applicability of the proposed method, we applied it to real navigation situations in the southwestern sea of the Korean Peninsula. In the simulation experiments, we used real automatic identification system data and marine environmental data. The proposed method built more efficient speed adjustment plans than the fixed-speed navigation in terms of energy savings and pollutant emission reduction. The results also showed that the speed adjustment exploits external forces in a beneficial manner.