NUK - logo
E-resources
Peer reviewed Open access
  • An analysis of AERONET aero...
    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    Journal of Geophysical Research: Atmospheres, 16 September 2012, Volume: 117, Issue: D17
    Journal Article

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (τ) and single scattering albedo (ωo) from Aerosol Robotic Network (AERONET) measurements are used to form absorption (i.e., ωo and absorption Ångström exponent (αabs)) and size (i.e., extinction Ångström exponent (αext) and fine mode fraction of τ) relationships to infer dominant aerosol types. Using the long‐term AERONET data set (1999–2010), 19 sites are grouped by aerosol type based on known source regions to (1) determine the averageωo and αabs at each site (expanding upon previous work), (2) perform a sensitivity study on αabs by varying the spectral ωo, and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral ωo averages indicate slightly more aerosol absorption (i.e., a 0.0 < δωo ≤ 0.02 decrease) than in previous work, and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of αabs show significant overlap among aerosol type categories, and at least 10% of the αabs retrievals in each category are below 1.0. Perturbing the spectral ωo by ±0.03 induces significant αabs changes from the unperturbed value by at least ∼±0.6 for Dust, ∼±0.2 for Mixed, and ∼±0.1 for Urban/Industrial and Biomass Burning. The ωo440nm and αext440–870nmrelationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface‐ and future space‐based instrumentation. Key Points Expand upon aerosol absorption climatology at key AERONET sites Perform a sensitivity study on the Absorption Angstrom Exponent Examine aerosol absorption and size to determine aerosol classifications