NUK - logo
E-resources
Open access
  • Efficient marginal likeliho...
    Levin, A.; Weiss, Y.; Durand, F.; Freeman, W. T.

    CVPR 2011, 06/2011
    Conference Proceeding

    In blind deconvolution one aims to estimate from an input blurred image y a sharp image x and an unknown blur kernel k. Recent research shows that a key to success is to consider the overall shape of the posterior distribution p(x, k\y) and not only its mode. This leads to a distinction between MAP x, k strategies which estimate the mode pair x, k and often lead to undesired results, and MAP k strategies which select the best k while marginalizing over all possible x images. The MAP k principle is significantly more robust than the MAP x, k one, yet, it involves a challenging marginalization over latent images. As a result, MAP k techniques are considered complicated, and have not been widely exploited. This paper derives a simple approximated MAP k algorithm which involves only a modest modification of common MAP x, k algorithms. We show that MAP k can, in fact, be optimized easily, with no additional computational complexity.