NUK - logo
E-resources
Full text
Peer reviewed Open access
  • Simulations of structural a...
    Mosaddeghi, Hamid; Alavi, Saman; Kowsari, M H; Najafi, Bijan

    The Journal of chemical physics, 11/2012, Volume: 137, Issue: 18
    Journal Article

    We use molecular dynamics simulations to study the structure, dynamics, and transport properties of nano-confined water between parallel graphite plates with separation distances (H) from 7 to 20 Å at different water densities with an emphasis on anisotropies generated by confinement. The behavior of the confined water phase is compared to non-confined bulk water under similar pressure and temperature conditions. Our simulations show anisotropic structure and dynamics of the confined water phase in directions parallel and perpendicular to the graphite plate. The magnitude of these anisotropies depends on the slit width H. Confined water shows "solid-like" structure and slow dynamics for the water layers near the plates. The mean square displacements (MSDs) and velocity autocorrelation functions (VACFs) for directions parallel and perpendicular to the graphite plates are calculated. By increasing the confinement distance from H = 7 Å to H = 20 Å, the MSD increases and the behavior of the VACF indicates that the confined water changes from solid-like to liquid-like dynamics. If the initial density of the water phase is set up using geometric criteria (i.e., distance between the graphite plates), large pressures (in the order of ~10 katm), and large pressure anisotropies are established within the water. By decreasing the density of the water between the confined plates to about 0.9 g cm(-3), bubble formation and restructuring of the water layers are observed.