NUK - logo
E-resources
Full text
Peer reviewed
  • Modular Synthesis of Fully‐...
    Jiang, Zhong‐Tao; Chen, Zhengzhao; Xia, Ying

    Angewandte Chemie International Edition, March 11, 2024, Volume: 63, Issue: 11
    Journal Article

    Here we present a modular, chemo‐, regio‐, and stereoselective synthesis of fully‐substituted and configuration‐defined alkyl vinyl ethers (AVEs) using simple chemical feedstocks. The distinctive approach involves the chemo‐ and regioselective functionalization of the CF2 unit in gem‐difluorinated cyclopropanes with O−H and C−H nucleophiles in a specific order. The resulting highly functionalized cyclopropanyl ethers then undergo a stereoselective ring‐opening process to produce fully‐substituted and configuration‐defined AVEs. These AVEs are rarely accessible through conventional methods and are easily transformable. Mechanistic experiments indicate that the success of this method relies on the use of dual‐functional copper catalysis, which is involved in both the functionalization of the CF2 unit and the subsequent ring‐opening process. The synthesis of highly‐substituted alkyl vinyl ethers in a well‐defined configuration is challenging. Now, a modular, chemo‐, regio‐, and stereoselective synthesis of fully‐substituted and configuration‐defined alkyl vinyl ethers (AVEs) enabled by dual‐functional Cu catalysis is reported. It also represents a novel ring‐opening pattern involving the cleavage of the C1−C3 bond in gem‐difluorinated cyclopropanes.