NUK - logo
E-resources
Full text
Peer reviewed
  • Chemical characterization a...
    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ghauri, Badar M.; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    Atmospheric environment (1994), March 2016, 2016-03-00, 20160301, Volume: 128
    Journal Article

    A mass balance method is applied to assess main source contributions to PM2.5 and PM10 levels in Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl−, NO3−, SO4−), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were determined in atmospheric fine (PM2.5) and coarse (PM10) aerosol samples collected under pre-monsoon conditions (March–April 2009) at an urban site in Karachi (Pakistan). The concentrations of PM2.5 and PM10 were found to be 75 μg/m3 and 437 μg/m3 respectively. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. “Calcareous dust” and „siliceous dust” were the over all dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10–2.5. Combustion particles and secondary organics (EC + OM) comprised 23% of PM2.5 and 6% of PM10–2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10–2.5 than in PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of “EC + OM” in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10–2.5 size fractions. In case of secondary inorganic aerosols, ammonium sulphate (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity were found in fraction PM10–2.5. The sea salt contribution is about 2% both to PM2.5 and PM10–2.5. •This study focuses on the impact of biomass burning in an urban environment.•Carbonaceous species like EC, OC, and anhydrosugars along with water soluble ions has been measured in the mega city of Karachi.•Levoglucosan has been used as tracer for biomass burning.