NUK - logo
E-resources
Full text
Peer reviewed
  • A review of functional sorb...
    Liu, Botao; Kim, Ki-Hyun; Kumar, Vanish; Kim, Sumin

    Journal of hazardous materials, 04/2020, Volume: 388
    Journal Article

    •The presence of arsenic in groundwater is regarded as a significant human health threat.•Information on various functional adsorbents is assessed for removal potential for As.•The removal potential for As is assessed on the basis of key performance metrics.•The regeneration of sorbents and their disposal after the use are also discussed. Display omitted The presence of arsenic in the water system has been a universal problem over the past several decades. Inorganic arsenic ions mainly occur in two oxidation states, As(V) and As(III), in the natural environment. These two oxidation states of arsenic ions are ubiquitous in natural waters and pose significant health hazards to humans when present at or above the allowable limits. Therefore, treatment of arsenic ions has become more stringent based on various techniques (e.g., membrane filtration, adsorption, and ion exchange). This paper aims to review the current knowledge on various functional adsorbents through comparison of removal potential for As on the basis of key performance metrics, especially the partition coefficient (PC). As a whole, novel materials exhibited far better removal performance for As(V) and As(III) than conventional materials. Of the materials reviewed, the advanced sorbent like ZrO(OH)2/CNTs showcased superior performances such as partition coefficient values of 584.6 (As(V) and 143.8 mol kg−1 M−1 (As(III) with excellent regenerability (>90 % of desorption efficiency after three sorption cycles). The results of this review are expected to help researchers to establish a powerful strategy for abatement of arsenic ions in wastewater.