NUK - logo
E-resources
Full text
Peer reviewed
  • 3D Porous Copper Skeleton S...
    Kang, Zhuang; Wu, Changle; Dong, Liubing; Liu, Wenbao; Mou, Jian; Zhang, Jingwen; Chang, Ziwen; Jiang, Baozheng; Wang, Guoxiu; Kang, Feiyu; Xu, Chengjun

    ACS sustainable chemistry & engineering, 02/2019, Volume: 7, Issue: 3
    Journal Article

    Zinc ion batteries (ZIBs) have attracted extensive attention in recent years, benefiting from their high safety, eco-friendliness, low cost, and high energy density. Although many cathode materials for ZIBs have been developed, the poor stability of zinc anodes caused by uneven deposition/stripping of zinc has inevitably limited the practical application of ZIBs. Herein, we report a highly stable 3D Zn anode prepared by electrodepositing Zn on a chemically etched porous copper skeleton. The inherent excellent electrical conductivity and open structure of the 3D porous copper skeleton ensure the uniform deposition/stripping of Zn. The 3D Zn anode exhibits reduced polarization, stable cycling performance, and almost 100% Coulombic efficiency as well as fast electrochemical kinetics during repeated Zn deposition/stripping processes for 350 h. Furthermore, full cells with a 3D Zn anode, ultrathin MnO2 nanosheet cathode, and Zn2+-containing aqueous electrolyte delivered a record-high capacity of 364 mAh g–1 at a current density of 0.1 A g–1 and good cycling stability with a retained capacity of 173 mAh g–1 after 300 charge/discharge cycles at 0.4 A g–1. This work provides a pathway for developing high-performance ZIBs.