NUK - logo
E-resources
Peer reviewed Open access
  • An injectable self-healing ...
    Chen, Hao; Cheng Ruoyu; Zhao, Xin; Zhang, Yuhui; Tam, Allison; Yan Yufei; Shen Haokai; Zhang, Yu Shrike; Jin, Qi; Feng Yonghai; Liu, Lei; Pan Guoqing; Cui Wenguo; Deng Lianfu

    NPG Asia materials, 01/2019, Volume: 11, Issue: 1
    Journal Article

    We report here an injectable, self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic wound regeneration. The hydrogel was prepared by coordinative cross-linking of multi-arm thiolated polyethylene glycol (SH-PEG) with silver nitrate (AgNO3). Due to the dynamic nature of Ag-S coordination bond and bacteria-killing activity of Ag+, the resultant coordinative hydrogel featured self-healing, injectable and antibacterial properties. In this study, we synchronously loaded an angiogenic drug, desferrioxamine (DFO), in the coordinative hydrogel during cross-linking. We finally obtained a multifunctional hydrogel that is manageable, resistant to mechanical irritation, antibacterial and angiogenic in vitro. Our in vivo studies further demonstrated that the injectable self-healing hydrogel could efficiently repair diabetic skin wounds with low bacteria-infection and enhance angiogenic activity. In short, besides diabetic skin wound repair, such dynamic multifunctional hydrogel scaffolds would show great promise in the regeneration of different types of exposed wounds, in particular, in situations with disturbed physiological functions, high risk of bacterial infections, and external mechanical irritation.Wound repair: Self-healing materials step up to save feetSoft gels that can be injected into wounds to protect them from infection and promote blood vessel formation may benefit diabetic foot care. To create a scaffold-like substance tough enough to handle the mechanical stresses that feet experience, Hao Chen and colleagues from the Shanghai Jiao Tong University and Jiangsu University in China linked polyethylene glycol chains together using silver–sulfur chemical bonds that quickly re-join after being broken. This strategy produced a gel that returns to its original shape after being sliced or twisted, and which can be loaded with drugs to aid vascular network growth. Experiments in rat models revealed that direct injection of drug-containing gels to wounds decreased their size by 20% compared to control groups. The intrinsic antibacterial nature of silver ions also generated sterile inhibition zones around gel-treated lesions.