NUK - logo
E-resources
Peer reviewed Open access
  • Engineering Sodium Metal An...
    Zhao, Wanyu; Guo, Min; Zuo, Zhijun; Zhao, Xiaoli; Dou, Huanglin; Zhang, Yijie; Li, Shiying; Wu, Zichen; Shi, Yayun; Ma, Zifeng; Yang, Xiaowei

    Engineering, 04/2022, Volume: 11, Issue: 4
    Journal Article

    Sodium (Na) metal batteries with a high volumetric energy density that can be operated at high rates are highly desirable. However, an uneven Na-ion migration in bulk Na anodes leads to localized deposition/dissolution of sodium during high-rate plating/stripping behaviors, followed by severe dendrite growth and loose stacking. Herein, we engineer the Na hybrid anode with sodiophilic Na3Bi-penetration to develop the abundant phase-boundary ionic transport channels. Compared to intrinsic Na, the reduced adsorption energy and ion-diffusion barrier on Na3Bi ensure even Na+ nucleation and rapid Na+ migration within the hybrid electrode, leading to uniform deposition and dissolution at high current densities. Furthermore, the bismuthide enables compact Na deposition within the sodiophilic framework during cycling, thus favoring a high volumetric capacity. Consequently, the obtained anode was endowed with a high current density (up to 5 mA∙cm−2), high areal capacity (up to 5 mA∙h∙cm−2), and long-term cycling stability (up to 2800 h at 2 mA∙cm−2).