NUK - logo
E-resources
Peer reviewed Open access
  • Size-dependent nonlinear an...
    Thanh, Cuong-Le; Tran, Loc V.; Vu-Huu, T.; Nguyen-Xuan, H.; Abdel-Wahab, M.

    Computer methods in applied mechanics and engineering, 08/2019, Volume: 353
    Journal Article

    This paper presents a nonlinear numerical model, which is based on the modified couple stress theory (MCST), and trigonometric shear deformation theory coupled with isogeometric analysis. The present approach captures the small scale effects on the geometrically nonlinear behaviors of functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro-plate with four patterns distribution. The equations of motion are established based on a Galerkin weak form associated with von-Kármán nonlinear strains. The MCST utilizes only one material length scale parameter to predict the size effect in FG-CNTRC micro-plate, for which its material properties are derived from an extended rule of mixture. The solutions of nonlinear static equation are obtained by using the Newton–Raphson technique and the Newmark time iteration procedure in association with Picard method is assigned to get responses of the nonlinear dynamic problems. In addition, the Rayleigh damping is applied to consider the influence of damping characteristic on the oscillation of FG-CNTRC micro-plates. Comparisons are performed to verify the proposed approach. Afterward, the numerical examples are used to show the effects of the distribution of carbon nanotubes (CNT), their volume fraction, the material length scale parameter and the boundary conditions on the nonlinear static and dynamic behaviors of FG-CNTRC micro-plates. •A nonlinear numerical model functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro-plate.•Modified couple stress theory (MCST) coupled with trigonometric shear deformation theory coupled with isogeometric analysis.•Influence of damping characteristic on the oscillation of FG-CNTRC micro-plates.