NUK - logo
E-resources
Peer reviewed Open access
  • AWZ1066S, a highly specific...
    Hong, W. David; Benayoud, Farid; Nixon, Gemma L.; Ford, Louise; Johnston, Kelly L.; Clare, Rachel H.; Cassidy, Andrew; Cook, Darren A. N.; Siu, Amy; Shiotani, Motohiro; Webborn, Peter J. H.; Kavanagh, Stefan; Aljayyoussi, Ghaith; Murphy, Emma; Steven, Andrew; Archer, John; Struever, Dominique; Frohberger, Stefan J.; Ehrens, Alexandra; Hübner, Marc P.; Hoerauf, Achim; Roberts, Adam P.; Hubbard, Alasdair T. M.; Tate, Edward W.; Serwa, Remigiusz A.; Leung, Suet C.; Qie, Li; Berry, Neil G.; Gusovsky, Fabian; Hemingway, Janet; Turner, Joseph D.; Taylor, Mark J.; Ward, Stephen A.; O’Neill, Paul M.

    Proceedings of the National Academy of Sciences - PNAS, 01/2019, Volume: 116, Issue: 4
    Journal Article

    Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis.