NUK - logo
E-resources
Peer reviewed Open access
  • Solar-driven, highly sustai...
    Kuang, Yun; Kenney, Michael J.; Meng, Yongtao; Hung, Wei-Hsuan; Liu, Yijin; Huang, Jianan Erick; Prasanna, Rohit; Li, Pengsong; Li, Yaping; Wang, Lei; Lin, Meng-Chang; McGehee, Michael D.; Sun, Xiaoming; Dai, Hongjie

    Proceedings of the National Academy of Sciences - PNAS, 04/2019, Volume: 116, Issue: 14
    Journal Article

    Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale fresh-water electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue. Here we present a multilayer anode consisting of a nickel–iron hydroxide (NiFe) electrocatalyst layer uniformly coated on a nickel sulfide (NiSx) layer formed on porous Ni foam (NiFe/NiSx-Ni), affording superior catalytic activity and corrosion resistance in solar-driven alkaline seawater electrolysis operating at industrially required current densities (0.4 to 1 A/cm²) over 1,000 h. A continuous, highly oxygen evolution reactionactive NiFe electrocatalyst layer drawing anodic currents toward water oxidation and an in situ-generated polyatomic sulfate and carbonate-rich passivating layers formed in the anode are responsible for chloride repelling and superior corrosion resistance of the salty-water-splitting anode.