NUK - logo
E-resources
Peer reviewed Open access
  • MicroRNA-410-5p exacerbates...
    Zou, Tong; Zhu, Mei; Ma, Yi-Cheng; Xiao, Fei; Yu, Xue; Xu, Li; Ma, Lan-Qing; Yang, Jiefu; Dong, Jian-Zeng

    Scientific reports, 06/2018, Volume: 8, Issue: 1
    Journal Article

    Metabolic disorders, such as obesity and type 2 diabetes, are associated with an increased risk of cardiomyopathy. To date, microRNA (miRNAs) functions in cardiac remodeling induced by obesity remain to be elucidated. We found that rats fed a high fat diet (HFD) manifested cardiac fibrosis and LV dysfunction. In the heart of rats fed HFD, the phosphorylation levels of Smad 2 and the expression of fibrotic genes, such as connective tissue growth factor, collagen-1α1 (Col1α1), Col3α1, and Col4α1, were up-regulated, which accompanied by an increase in Smad 7 protein levels, but not its mRNA levels. Using miRNA microarray analysis, we showed that the miRNA miR-410-5p inhibited the protein expression of Smad 7, thus increasing the phosphorylation levels of Smad 2. Overexpression of miR-410-5p promoted cardiac fibrosis in rats fed normal diet, whereas inhibition of miR-410-5p by way of miR-410-5p antimiR suppressed cardiac fibrosis in rats fed HFD. Finally, our data revealed that miR-410-5p from the kidney and adipose tissues was probably transferred to heart to induce cardiac fibrosis. Taken together, our study characterizes an endocrine mechanism in which adipose- or kidney-derived circulating miR-410-5p regulates metabolic disorders-mediated cardiac remodeling by activating the TGFβ/Smad signaling in heart.