NUK - logo
E-resources
Peer reviewed Open access
  • Causal effect of the tropic...
    Zhao, Siyu; Zhang, Jiaying

    Climate dynamics, 02/2022, Volume: 58, Issue: 3-4
    Journal Article

    The Colorado River is one of the most important rivers in the southwestern U.S., with ~ 90% of the total flow originating from the Upper Colorado River Basin (UCRB). The UCRB April–July streamflow is well-correlated to the UCRB spring precipitation. It is known that the UCRB precipitation is linked to an El Niño-like sea surface temperature (SST) pattern, but the causal effect of the tropical Pacific SST on the UCRB spring precipitation is still uncertain. Here, we apply a Granger causality approach to understand the causal effect of the tropical Pacific averaged SST in previous three seasons (winter, fall, and summer) on the UCRB averaged precipitation in spring in observations and two climate models. In observations, only the winter SST has Granger causal effect (with p -value ~ 0.05) on spring precipitation, while historical simulations of the two climate models overestimate the causal effect for winter and fall (with p -value < 0.01 and < 0.05, respectively) due to model biases. Moreover, future projections of the two climate models show divergent causal effects, especially for the scenario with high anthropogenic emissions. The divergent projections indicate that (1) there are large uncertainties in model projections of the causal effect of the tropical Pacific SST on UCRB spring precipitation and (2) it is uncertain whether climate models can reliably capture changes in such causality. These uncertainties may result in large uncertainties in seasonal forecasts of the UCRB hydroclimate under global climate change.